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Abstract 
The study of unsteady hydro magnetic free convective flow of viscous incompressible and electrically 

conducting fluids past an infinite vertical porous plate in the presence of constant suction and heat absorbing 

sinks has been made. Appropriate solutions have been derived for the velocity and temperature fields, skin 

friction and rate of heat transfer using Galerkin finite element method. It is observed that increase in magnetic 

field strength decreases the velocity of the fluid. Also the skin friction and rate of heat transfer of the conducting 

fluid decrease with increase in magnetic field strength. 
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finite element method. 

 

I. I.NTRODUCTION 
     In recent years, the analysis of 

hydromagnetic convection flow involving heat and 

mass transfer in porous medium has attracted the 

attention of many scholars because of its possible 

applications in diverse fields of science and 

technology such as – soil sciences, astrophysics, 

geophysics, nuclear power reactors etc. In 

geophysics, it finds its applications in the design of 

MHD generators and accelerators, underground water 

energy storage system etc. It is worth-mentioning that 

MHD is now undergoing a stage of great enlargement 

and differentiation of subject matter. These new 

problems draw the attention of the researchers due to 

their varied significance, in liquid metals, electrolytes 

and ionized gases etc. The MHD in the present form 

is due to contributions of several notable authors like 

Shercliff [13], Ferraro and Plumpton [9] and 

Crammer and Pai[8]. Prasad et al.[11] discussed 

finite difference analysis of radiative free convection 

flow past an impulsively started vertical plate with 

variable heat and mass flux.Suneetha et al. [15] 

discussed radiation and mass transfer effects on 

MHD free convective Dissipative fluid in the 

presence of heat source/sink. Prasad et al. [12] 

studied transient radiative hydromagnetic free 

convection flow past an impulsively started vertical 

plate with uniform heat and mass flux.Singh et 

al.[14] studied the effects of permeability variation 

and oscillatory suction velocity on free convection 

and mass transfer flow of a viscous fluid past an 

infinite vertical porous plate to a porous medium 

when the plate is subjected to a time dependent  

 

suction velocity normal to the plate in the presence of 

uniform transverse magnetic field. Ahmed and Liu 

[1] studied the effect of heat and mass transfer mixed 

convectivethree - dimensional flowwith transversely 

periodic suction velocity. The effect of chemical 

reaction magnetohydrodynamicflow of a uniformly 

stretched vertical permeable surface in the presence 

of heat generation/absorption studied by Chamkha 

[6].Ahmed [2] presented the effects of viscous 

dissipation and chemical reaction on transient free 

convective MHD flow over a vertical porous 

plate.Chen [7]  discussed the combined heat and mass 

transfer in MHD free convection from a vertical plate 

with ohmic heating and viscous dissipation. 

The propagation of thermal energy through 

mercury and electrolytic solution in the presence of 

external magnetic field and heat absorbing sinks has 

wide range of applications in chemical and 

aeronautical engineering, atomic propulsion, space 

science etc.Ahmed [3]studied free and forced 

convective MHD oscillatory flows over an infinite 

porous surface in an oscillating free stream. Transient 

three – dimensional flows through a porous medium 

with transverse permeability oscillating with time 

studied by Ahmed [4]. Zueco [16] discussed the 

numerical study of an unsteady free convective 

magneto hydrodynamic flow of a dissipative fluid 

along a vertical plate subject to a constant heat flux. 

Aldoss and Al – Nimir [5]has been studied the effect 

of the local acceleration term on the MHD transient 

free convection flow over a vertical plate. 

Muthucumaraswamyet al. [10] studied the heat and 

mass transfer effects on flow past an impulsively 

started vertical plate. Our objective in the present is 
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to study the heat transfer in mercury(Pr = 0.025) and 

electrolytic solution(Pr = 1.0) past an infinite porous 

plate with constant suction in the presence of uniform 

transverse magnetic field and heat sink. 

 

II. Mathematical Analysis: 

Let 
'x  – axis be taken in the vertically 

upward direction along the infinite vertical plate and 
'y  – axis normal to it. Neglecting the induced 

magnetic field and applying Boussinesq’s 

approximation, the equation of the flow can be 

written as: 

 
Figure 1. Physical sketch and geometry of the 

problem 
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Energy Equation: 
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The boundary conditions of the problem are: 
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Introducing the following non-dimensional variables 

and parameters, 
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    Where 

EcKSGrCTTTkg pwo ,,,Pr,,,,,,,,,,,, ''



 and M are respectively the acceleration due to 

gravity, density, coefficient of kinematic viscosity, 

volumetric coefficient of expansion for heat transfer, 

angular frequency, coefficient of viscosity, thermal 

diffusivity, temperature, temperature at the plate, 

temperature at infinity, specific heat at constant 

pressure, Prandtl number, Grash of number for heat 

transfer, heat source parameter, permeability 

parameter, Eckert number and Hartmann number. 

 

Substituting (5) in equations (2) and (3) under 

boundary conditions (4), we get: 
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The corresponding boundary conditions are: 
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III. Method of Solution: 
By applying Galerkin finite element method 

for equation (6) over the element (e),( kj yyy  ) 

is: 
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Where TGrP )(4 ; 

Integrating the first term in equation (9) by parts one 

obtains 
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Neglecting the first term in equation (10), one gets: 

0

44

4

)(
)()(

)(

)()(























































 dy

PMu
y

u

t

u
N

y

u

y

N
k

j

y

y e
ee

Te

eTe

Let 
)()()( eee Nu   be the linear piecewise 

approximation solution over the element (e)       
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Simplifying we get 
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Where prime and dot denotes differentiation 

w.r.t ‘y’ and time ‘t’ respectively. Assembling the 

element equations for two consecutive elements 

ii yyy 1 and 1 ii yyy following is 

obtained:    
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Now put row corresponding to the node ‘i’ 

to zero, from equation (11) the difference schemes 

with hl e )(
is: 
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Applying the trapezoidal rule, following system of 

equations in Crank-Nicholson method are obtained: 
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Now from equation (7) following equation is 

obtained:  
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Where  A1 = 2 + 4Ak + 12rk – 24r; A2 = 16Ak + 48r 

+ 8; A3 = 2 + 4Ak - 12rh - 24r; 

A4 = 2 - 4Ak - 12rh + 24r; 

 A5 = 8 – 16Ak – 48r;  

A6 = 2 - 4Ak + 12rh + 24r;              

 G1 = 2(Pr) + 12rh(Pr) – S(Pr)k – 24r; 

 G2 = 8(Pr) + 48r – 4S(Pr)k;  

 G3 = 2(Pr) - 12hr(Pr) - 24r – S(Pr)k;  

G4 = 2(Pr) - 12rh(Pr) + 24r + S(Pr)k;  

G5 = 8(Pr) – 48r + 4S(Pr)k;  

G6 = 2(Pr) + 12rh(Pr) + 24r + 

S(Pr)k; ;)(4 j
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Here r = 
2h

k
and h, k are mesh sizes along y - 

direction and time - direction respectively. Index ‘i’ 

refers to space and ‘j’ refers to the time. In the 

equations (13) and (14) takingi = 1(1) n and using 

boundary conditions (8), then the following system of 

equations are obtained: 

2)1(1 iBXA iii                            (15) Where 

'

iA s are matrices of order n and iX ,
'

iB s are column 

matrices having n-components. The solutions of 

above system of equations are obtained by using 

Thomas algorithm for velocity and temperature. 

Also, numerical solutions for these equations are 

obtained by C - programme. In order to prove the 

convergence and stability of Galerkin finite element 

method, the same C - programme was run with 

smaller values of h and k and no significant change 

was observed in the values of u and T. Hence the 

Galerkin finite element method is stable and 

convergent. 

 

IV. Skin friction and Rate of heat 

transfer: 
The skin - friction at the plate in the 

dimensionless form is given by
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And the rate of heat transfer coefficient (Nu) at the 

plate is 
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V. Results and Discussion: 
The profiles of velocity and temperature are 

shown in the figures 1, 2 and 3 respectively. Figure 1 

exhibits the effects of Hartmann number, Prandtl 

number and sink – strength on the velocity profiles 

with other parameters are fixed.  

 
Figure 1. Effects of Pr, M and S on velocity for Gr = 

5.0, Ec = 0.001, ω = 5.0, ε = 0.2 and ωt = π/2. 

 

The effect of the Hartmann number (M) is 

shown in figure (1). It is observed that the velocity of 

the fluid decreases with the increase of the magnetic 

field number values. The decrease in the velocity as 

the Hartmann number (M) increases is because the 

presence of a magnetic field in an electrically 

conducting fluid introduces a force called the Lorentz 

force, which acts against the flow if the magnetic 

field is applied in the normal direction, as in the 

present study. This resistive force slows down the 

fluid velocity component as shown in figure (1). 

And from figure 1, it is observed that the 

velocity is greater for mercury (Pr = 0.025) than that 

of electrolytic solution (Pr= 1.0). Also from figure 1 

shows the effect of heat sink (S) in the case of 
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cooling plate (Gr>0), i.e., the free convection 

currents convey heat away from the plate into the 

boundary layer. With an increase in S from -0.15 to -

0.10 there is a clear increase in the velocity, i.e., the 

flow is accelerated. When heat is absorbed, the 

buoyancy force decreases, which retard the flow rate 

and thereby giving, rise to the increase in the velocity 

profiles. 

Figure 2. Effects of Gr and Ec on velocity for Pr = 

1.0, M = 1.0, ω = 5.0, ε = 0.2 and ωt = π/2. 

     

For various values of Grash of number (Gr) 

and Eckert number (Ec) the velocity profiles ‘u’ are 

plotted in figure (2). The Grash of number Gr 

signifies the relative effect of the thermal buoyancy 

force to the viscous hydrodynamic force in the 

boundary layer. As expected, it is observed that there 

is a rise in the velocity due to the enhancement of 

thermal buoyancy force. Also, as Gr increases, the 

peak values of the velocity increases rapidly near the 

porous plate and then decays smoothly to the free 

stream velocity. Figure 2 illustrates the effect of 

Eckert number Ec on velocity field under the 

influence of the Prandtl number Pr and the Hartmann 

number M. We observed an increase in Ec from 

0.001 to 0.1 and that with Prefixed either at 1.0 or at 

0.025 increases in the velocity profile. However, a 

rise in Ecf rom 0.001 to 0.1 with constant Pr provides 

increase in the velocity profile. There is no back flow 

in the boundary layer for any combination of Ec and 

Pr. 

The temperature profiles Tare depicted in 

figure 3 for different values of heat sink parameter S, 

Prandtl number Pr and the Eckert number Ec. The 

fluid temperature attains its maximum value at the 

plate surface, and decreases gradually to free stream 

zero value far away from the plate. It is seen that the 

fluid temperature increases with a rise in Ec. In the 

present study, we restrict our attention to the positive 

values of Ec, which corresponds to plate cooling, i.e., 

loss of heat from the plate to the fluid. Also, we note 

that increasing Ec causes an increase in Joule heating 

as the magnetic field adds energy to the fluid 

boundary layer due to the work done in dragging the 

fluid. Therefore, the fluid temperature is noticeably 

enhanced with an increase in S from -0.10 to -0.05. 

This increase in the temperature profiles is 

accompanied by the simultaneous increase in the 

thermal boundary layer thickness. 

In figure (3) we depict the effect of Prandtl 

number (Pr) on the temperature field. It is observed 

that an increase in the Prandtl number leads to 

decrease in the temperature field. Also, temperature 

field falls more rapidly for electrolytic solution and 

the temperature curve is exactly linear for mercury, 

which is more sensible towards change in 

temperature. From this observation it is conclude that 

mercury is most effective for maintaining 

temperature differences and can be used efficiently in 

the laboratory. Electrolytic solution can replace 

mercury, the effectiveness of maintaining 

temperature changes are much less than mercury. 

However, electrolytic solution can be better and 

cheap replacement for industrial purpose. This is 

because, either increase of kinematic viscosity or 

decrease of thermal conductivity leads to increase in 

the value of Prandtl number (Pr). Hence temperature 

decreases with increasing of Prandtl number (Pr).  

The skin friction for mercury and electrolytic solution 

are given in the table 1. It is noticed that the increase 

in magnetic field strength decreases the skin friction 

for both mercury and electrolytic solution. The rate of 

heat transfer for mercury and electrolytic solution are 

given in the table 2. It is observed the rate of heat 

transfer decreases with increase in magnetic field 

strength or sink strength both mercury and 

electrolytic solution. 

Figure 3. Effects of Pr, Ec and S on temperature for 

Gr = 5.0, M = 1.0, ω = 5.0, ε = 0.2     and ωt = π/2 

Table 1.Values of skin friction (τ) for Gr = 5.0, Ec= 

0.001, ω = 5.0, ε = 0.2 and ωt = π/2 
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Pr M S τ 

 

Mercury (Pr = 

0.025) 

1.0 -0.05 7.6548 

5.0 -0.05 2.7271 

5.0 -0.10 2.7045 

 

Electrolytic 

Solution (Pr= 1.0) 

1.0 -0.05 3.0426 

5.0 -0.05 1.6584 

5.0 -0.10 1.5458 

Table 2.Values of rate of heat transfer (Nu) for Gr = 

5.0, Ec= 0.001, ω = 5.0, ε = 0.2 and ωt = π/2 

Pr M S Nu 

 

Mercury (Pr = 

0.025) 

1.0 -0.05 -0.0336 

5.0 -0.05 -0.0341 

5.0 -0.10 -0.0404 

 

Electrolytic 

Solution (Pr= 1.0) 

1.0 -0.05 -0.9330 

5.0 -0.05 -1.0089 

5.0 -0.10 -1.0209 

 

VI. CONCLUSION: 
We summarize below the following results 

of physical interest on the velocity and temperature 

distribution of the flow field and also on the skin 

friction and rate of heat transfer at the wall. 

A growing Hartmann number or Prandtl 

number    retards the velocity of the flow field at all 

points. 

The effect of increasing Grashof number or 

heat source parameter or Eckert number is to 

accelerate velocity of the flow field at all points. 

A growing Eckert number or heat source parameter 

increases temperature of the flow field at all points. 

The Prandtl number decreases the temperature of the 

flow field at all points. 

A growing Hartmann number decreases the 

skin friction while increasing the heat source 

parameter increases the skin friction for both mercury 

and electrolytic solution. 

The rate of heat transfer for both mercury and 

electrolytic solution is decreasing with increasing of 

Hartmann number and increases with increasing of 

heat source parameter. 
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